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Steady and oscillatory convection in a rectangular box heated from below are studied 
by means of a numerical solution of the three-dimensional, time-dependent 
Boussinesq equations. The effect of the rigid sidewalls of the box on the spatial 
structure and the dynamical behaviour of the flow is analysed. Both conducting and 
adiabatic sidewalls are considered. Calculated streamlines illustrate the three- 
dimensional structure of the steady flow with Prandtl numbers 0.71 and 7 .  The onset 
and the frequency of the oscillatory instability are calculated and compared with 
available experimental and theoretical data. With increasing Rayleigh number a 
subharmonic bifurcation and the onset of a quasi-periodic flow can be observed. A 
comparison of the different time-dependent solutions shows some interesting relations 
between the spatial structure and the dynamical behaviour of the confined flow. 

1. Introduction 
Thermal convection in a fluid layer heated from below has been studied extensively. 

This flow exhibits a sequence of transitions from steady laminar to turbulent flow 
which allows fundamental studies of nonlinear hydrodynamics. In fluid layers of 
infinite horizontal extent the convection flow starts at the critical Rayleigh number 
Ra, with steady two-dimensional rolls. The stability of this flow with respect to 
three-dimensional or time-dependent disturbances is well known and has been 
described in numerous theoretical and experimental papers (Busse 1981 ; Kosch- 
mieder 1981 ; Zierep & Oertel 1981 ). 

In  experiments the infinite fluid layer is approximated by a large-aspect-ratio 
container where sidewall effects can be neglected. However, considering low-aspect- 
ratio boxes, the influence of the side-walls cannot be neglected. The confined flow now 
also depends on the geometry of the box, as well as on the thermad properties of the 
sidewalls. Linear stability analysis and experiments show the stabilizing effect of the 
vertical boundaries on the onset of convection flow (Davis 1967; Stork & Muller 
1972). The exact solution of the confined flow must be three dimensional even at  the 
onset of convection, as was proved by Davies-Jones (1970) and Brick & Clever (1980). 
Therefore, a transition from two-dimensional to three-dimensional steady stages 
predicted and observed in infinitely extending fluid layers does not occur in 
low-aspect-ratio boxes. Benjamin (1978) also showed that the stability behaviour 
and the bifurcations of viscous flows can be changed considerably by introducing a 
finite geometry. Contrary to the possibility of a continuous variation of the 
wavenumber of the periodic flow in infinite layers, the wavelength of the convection 
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rolls in boxes can be changed only by a discrete variation of the number of rolls. In 
experiments using different convection boxes this nonlinear wavenumber-selection 
phenomenon was investigated during the transition from steady to oscillatory and 
finally to turbulent convection (Oertel 1980; Jager 1982). In low-aspect-ratio boxes 
only a few solutions with different numbers of convection rolls exist. However, in 
experiments Gollub & Benson (1980) observed different flows having the same 
number of rolls. Although the differences between the flows are relatively small, each 
one of the configurations seems to be stable for a long time. This phenomenon is 
explained by the influence of the initial conditions on the experiments. This statement 
agrees with theoretical results of Benjamin (1978), who suggested stable solutions in 
viscous flows that can only be produced by special initial conditions. 

The goal behind most of the experiments in small boxes is to study the transitions 
to various time-dependent flows, which occur with increasing Rayleigh number. 
Varying the Prandtl number, the geometry and the initial conditions, Gollub & 
Benson (1980) identified four distinct sequences of instabilities in the convection 
flow : two or three independent frequencies, phase-locking phenomena of these 
frequencies, intermittent non-periodic flow and period-doubling bifurcation of peri- 
odic flows. Subharmonics were also observed by Jager (1982) in experiments with 
similar geometry. Libchaber & Maurer (1980) and Libchaber, Laroche & Fauve 
(1982) studied low-Prandtl-number fluids in various boxes with a magnetic field 
oriented parallel to the axis of the convection rolls. These experiments show a 
sequence of period-doubling bifurcations and agree well with theoretical predictions 
of Feigenbaum (1979). 

Gollub, Benson & Steinman (1980) observed that rather small variations of the 
mean flow can produce major qualitative changes in the sequence of instabilities. 
Using laser-Doppler methods they obtained contour maps of both the time-averaged 
flow and the subharmonic amplitude in a horizontal section within the box, which 
give some information about the spatial structure of the time-dependent flow. 
General relations between the spatial structure of the flow and the dynamical 
behaviour of the system are still unknown. 

In addition to experimental results, numerical simulations of the three-dimensional 
convective flow in small containers can give important information about the onset 
of various time-dependent instabilities. The data of the temperature and the velocity 
field obtained by a three-dimensional time-dependent solution can give detailed 
information about the spatial and temporal behaviour of the flow field. Recent 
numerical calculations of Upson et al. (1983) show an oscillatory convection flow in 
a box with adiabatic sidewalls. The calculated frequency agreed with the experimental 
results of Maurer & Libchaber (1979). Two frequencies with an equal amplitude 
appearing in the power spectrum were expounded as a reference to a subharmonic 
bifurcation. Another interpretation of this effect will be discussed. 

In this paper steady and time-dependent calculations of the convection flow in a 
box with the aspect ratio 1ength:width:height of 4:2 :1  are presented. To avoid 
errors related to numerical dissipation a Galerkin method is used to solve the three- 
dimensional Boussinesq equations. First we will describe the three-dimensional 
effects in the steady convection flow to clarify the influence of conducting or adiabatic 
sidewalls. With increasing Rayleigh number the onset of the oscillatory instability 
is calculated for various Prandtl numbers. The critical Rayleigh numbers and the 
frequencies of the oscillations agree with corresponding experimental results. Power 
spectra of the temperature and the velocity components are compared, and their 
dependence on the position in the flow field is discussed. For certain parameters a 
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FIGURE 1. Principal sketch of the rectangular box and a possible three-roll structure. 

subharmonic instability of the oscillatory flow and the onset of quasi-periodic flow 
is observed. A spectral analysis allows us to determine the spatial structure of the 
subharmonic frequency. An interesting relationship is found by comparison of the 
spatial structure of the mean flow with the distribution of the subharmonic 
amplitude. 

The mathematical formulation of the problem and a brief description of our 
numerical technique is given in $ 2 .  In  $ 3  the steady solutions are discussed by means 
of calculated streamlines. The results concerning the oscillatory convection and the 
onset of period-doubling bifurcation are presented in $4, and discussed in the light 
of other theoretical and experimental results in $5. 

2. Mathematical formulation and numerical method 
We consider a fluid layer in a horizontal rectangular box of height L, and horizontal 

extents L, and L, (figure 1 ) .  The upper and the lower boundary are kept a t  the 
constant temperatures T, and T,, respectively. Using the Boussinesq approximation 
we obtain dimensionless equations for the velocity vector u = (u, zi, w) and for the 
deviation 8 from the static temperature distribution in the following form 

Pr-l - -+v  V v  = - V p + V 2 v $ R u 8 k ,  (2.1 a )  

ae 
-+v.VB = v .k+V28,  (2 . lc )  at 

(2.1 b )  
(:: ) 

v*v = 0, 

where p is the pressure and k is the unit vector in the z-direction. The height L, of 
the fluid layer, the vertical thermal diffusion time L;/K and the temperature 
difference (T, - T,) have been used as scales for length, time and temperature 
respectively, where K is the thermal diffusivity. The parameter R a  is the Rayleigh 
number and Pr the Prandtl number, defined as 

Y9VI  - T2) 4, pr = - V R a  = 
K 1’ K ’  

where y is the coefficient of thermal expansion, g is the acceleration due to gravity 
and v is the kinematic viscosity. At all walls of the box the no-slip boundary condition 
is prescribed. At the horizontal boundaries the deviation 8 of the temperature must 
vanish. The sidewalls are chosen to be either conducting or adiabatic, so the 
temperature deviation 8 or its gradient normal to the wall is set equal to zero. 
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A Galerkin method is developed to solve (2.1). The advantage of this method is 
based on the analytical representation of the solution by series expansions. All spatial 
differentiations can be done analytically and numerical dissipation, as it appears in 
finite difference schemes, is avoided completely. In  addition, the basis functions can 
be chosen such as to exactly satisfy all boundary conditions. By using non-divergent 
basis functions for the expansion of the velocity field, the pressure term can be 
eliminated. A general representation of a three-dimensional, non-divergent vector 
field is the following superposition 

u = V x (V x k4) +V x k$, (2.2) 

where k is the unit vector in z-direction. By defining two new scalar functions $(l) 

and q V 2 )  according to ( 2 . 3 ~ ) ,  we can derive a formulation for a non-divergent vector 
field, which is equivalent to the general representation (2.2) and consists of two similar 
terms (2.3b): 

1 a, 
a, $(2) = -a, a, $4, @, J 

= a, a, 4 -ax +, 
( 2 . 3 ~ )  

u = V x i$(l)+ V x j$@), (2.3 b) 

where i and j are unit vectors in the x- and y-direction, respectively. When the 
formulation ( 2 . 3 b )  is used to describe the velocity field, the no-slip condition causes 
a coupling of the two scalar functions $(l) and $@) 

u = - a  $ ( 2 )  = 0, ( 2 . 4 ~ )  

(2.4b) 

( 2 . 4 ~ )  

To avoid this coupling at  the boundary of the integration domain, we extend (2.3 b) 
by two additional scalar functions $(31) and $(32), which are chosen in such a way 
that they satisfy the condition ( 2 . 4 ~ )  in the whole integration region: 

u = V x i$(') + V x j $ ( z )  + V x i$(3l) + V ~ j $ ( ~ 2 ) ,  ( 2 . 5 ~ )  

with a p 3 2 )  -8, p i )  = 0. (2.5b) 

The extended formulation ( 3 . 5 ~ )  now makes i t  possible to use the simple boundary 
conditions (2.6) for the scalar fields $(l), $(2), @(31) and $(32) without any restriction 
on the generality of the representation of the vector field. 

(2.6) a, p) = a, $(2) = a, @(2) = a = a k ( 3 1 )  = a e r ( 3 2 )  = 0. 
Y 

Now the only coupling between the scalar functions is given in the interior of the 
computational region by the governing equations (2.1 ), which essentially simplifies 
the numerical procedure. 

The scalar functions $(l), $@), $(31) and $(32) are expanded in terms of systems of 
orthogonal functions : 

( 2 . 7 ~ )  
i < L  j < M  k < N  

(2.7b) 
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7 p 3 1 )  = x x x C i j k ( t ) a  ( 2 . 7 ~ )  
i g L  j g M  k g N  

(2 .7d)  

with the dimensionless horizontal extends 1, = L,/L, and ly = L,/L, of the box. 
The functions Cv are the so-called ‘beam-functions’ documented by Harris & Reid 
(1958). They consist of even functions for odd v and odd functions for even v. By 
comparing the four expansions (2 .7) ,  a linear dependence can be found for the 
functions of the series (2 .7c ,d)  with k > 1 .  Therefore, we can omit these functions 
without a loss of generality of the whole expansion. The temperature 8 is represented 
by the expansions (2.8a) or (2 .8b) ,  assuming either conducting or adiabatic sidewalls. 

8 =  Z x x dijkcos 
i S L  j g M  k B N  

(2.8b) 

The trigonometric functions as well as the beam-functions ensure a homogeneous 
resolution in the whole computational region. However, for some particular cases a 
high resolution near the wall is required for the accurate calculation of boundary 
layers. This can be achieved by using two sets of orthogonal polynomials, which 
satisfy the same boundary conditions as the trigonometric and beam-functions 
respectively. They can be constructed as a linear composition of the well-known 
Chebyshev polynomials pp transformed on to the interval [ -$, i]. 

( 2 . 9 ~ )  

(2.9b) 

The coefficients ap are chosen in such a way that the polynomials P, and Q, 
respectively form an orthogonal set and satisfy the boundary conditions given in 
(2 .9) .  The beam-functions as well as the trigonometric functions can now be 
optionally replaced by the polynomials for one or more directions in the expansions 
of the velocity or the temperature. This offers the possibility of adapting the code 
to the given physical problem. 

Applying the expansions (2 .7) ,  (2.8) in the Boussinesq equations (2 .1)  leads - 
together with the orthogonality condition - to a system of ordinary differential 
equations for the coefficients of the expansion. For the discretization of the 
time-derivatives, we employ an implicit method called the ‘one-leg method’, as 
described by Dahlquist ( 1  976). This time-stepping method is of second-order accuracy 
and yields stable solutions even for large time-steps. More details of the numerical 
procedure are described in Kessler (1983, 1984). 

As a result of the large domain of integration, three-dimensional, time-dependent 
numerical simulations require much CPU-time, even on modern vector computers. 
Therefore, we restrict our study to flow phenomena that are symmetric with respect 
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to the following conditions. First the mid-plane y = 0 is assumed to be a plane of 
symmetry, which means 

(2.10) 

This symmetry implies that  the coefficients b,,, dijk with evenj  and aijk, cijk with odd 
j must vanish. I n  addition, we assume point symmetry or axial symmetry of the flow 
field in the (2, x)-plane. The point symmetry enables us to calculate solutions with 
an odd number of convection rolls, while axial symmetry corresponds to solutions 
with an even number of convection rolls. These symmetry conditions can be written 
as follows: 

(2.11) I u(2, y, 2 )  = -u( --z,y, - z ) ,  
v(z, y, z )  = 'u(--5, y, --q, 
w(x,y,z) = -w(--z,y, -4, 
O(x,y,z) = -O(--,y, - 4 ,  

(2.12) 

The point symmetry (2.11) is equivalent to all coefficients aijk,di jk  with even i + k  
and bdjk,  cijk with odd i+ k in the expansion (2.7) being equal to zero. The axisym- 
metric solution is characterized by the fact that all coefficients aUk, dUk with even 
i and biik,cijk with odd i must vanish. The symmetry conditions imposed on the 
numerical scheme can also be seen in real steady flows, provided that the Rayleigh 
number is slowly increased in the experiments (Jiiger 1982). Therefore the symmetry 
conditions prove to be valid a t  least for steady calculations. But as soon as a variation 
of the number of rolls is accompanied by a change in symmetry, this physical process 
cannot be simulated by our numerical method. Considering an odd number of 
convection rolls, the symmetry of the flow is preserved even beyond the onset of 
oscillations. For an even number of convection rolls, the oscillatory modes observed 
in experiments break the symmetry in the (2, 2)-plane, as the central zone of upward 
or downward motion no longer remains a t  a fixed point. Hence, the symmetry 
condition restricts our studies to an odd-number roll configuration in a box; a 
wavenumber dependence of the oscillation cannot be examined by our simulation. 
The transition from periodic to aperiodic or chaotic solutions is strongly influenced 
by symmetry conditions imposed on the numerical method, as was pointed out by 
McLaughlin & Orszag (1982). Therefore, the transition to aperiodic flows cannot be 
reproduced correctly by our numerical simulations. Nevertheless, the numerical 
method described above seems to be an efficient model for studying instability 
phenomena in the regime of periodic or quasiperiodic time-dependent flows. 

The code has been tested in several ways. First, for the purposes of a comparison 
problem announced by Jones (1979), we calculated two-dimensional, steady solutions 
for the convection flow of air in a square cavity up to  Rayleigh numbers of 10'. These 
high Rayleigh numbers cause very thin boundary layers for the temperature and the 
velocity. Therefore, we use the polynomials defined above for each direction, setting 
the truncation parameters L and M equal to 22 and 16 respectively. A detailed 
comparison of the solutions of various authors was made by De Vahl Davis & Jones 
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Frick et al. (1983) 

Ra L = M  N Nu L = M = N  N u  

30.103 8 8 3.649 8 3.702 
12 10 3.632 10 3.637 
16 12 3.61 1 12 3.610 

12 10 4.117 10 4.142 
16 12 4.092 12 4.093 

50.103 8 8 4.137 8 - 

70.103 8 8 4.473 
12 10 4.462 
16 12 4.434 

TABLE 1 .  Nusselt number of square convection a t  infinite Prandtl number. 

(1983). According to their report, most quantities of the Galerkin solution deviate 
by less than 1 yo a t  a Rayleigh number of lo6 and less than 0.3 yo for the lower Rayleigh 
numbers of from the most accurate finite-difference and finite-element solutions. The 
test also illustrates that  the Galerkin method needs more than three times fewer 
unknowns than finite-difference or finite-element methods for solutions with com- 
parable accuracy. 

I n  order to check the accuracy of the time-discretization of the code, the time 
evolution of a three-dimensional small-amplitude perturbation has been computed 
for various timesteps At. The growth rate as computed from the time evolution of 
the perturbation has been compared with corresponding eigenvalue calculations 
performed by Kirchartz (1980). The comparison of the solutions shows a deviation 
of approximately 0.6 yo. This result is achieved for timesteps At lower than 0.01 and 
confirms the timestepping method used. 

In  order to verify the three-dimensional code in the strongly nonlinear region also, 
and in order to obtain information about the resolution of the code, we need 
quantitative comparisons a t  high Rayleigh numbers. We are not aware of detailed 
quantitative solutions with high accuracy in closed boxes for such high Rayleigh 
numbers. Therefore, for comparison purposes, we refer to the three-dimensional 
results of Frick, Busse & Clever (1983), who assumed periodic boundary conditions 
in horizontal directions. The different boundary conditions in horizontal directions 
can easily be implemented by replacing the beam-functions in horizontal directions 
by trigonometric functions in the expansion (2.7). This can be performed merely by 
the exchange of two statements in the code. Assuming an infinite Prandtl number, 
the so-called ‘square convection ’ is calculated for various Rayleigh numbers and 
degrees of resolution. As a characteristic quantity, the dimensionless vertical heat 
transfer rates described by the Nusselt number N u  of the solutions are summarized 
in table 1 in comparison with the results of Frick et al. (1983). The agreement of the 
results with the best respective approximation to three decimal places is an excellent 
verification of the present code. Furthermore, the results confirm the good resolution 
of the temperature boundary layers at high Rayleigh numbers using 12 functions in 
the z-direction. The test also shows the importance of good horizontal resolution for 
the convergence of the vertical heat transfer. Moreover, considering the convergence 
rates of the solutions, we estimate an error of less than 0.4 % for the solutions with 
the best approximation. 
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case (a )  ( b )  (c)  (4 ( p )  

T3 29 33 37 41 45 

TI 30 34 38 42 46 
T2 16 20 24 28 32 

N 3.178 3.414 3.542 3.498 3.510 

TABLE 2. Time-averaged Nusselt number for various truncation parameters TI, T,, T3; Ra = 60000; 
Pr = 0.71. 

To achieve a comparable accuracy in the case of confined flows with a minimum 
of numerical effort, the truncation of the expansions (2.7) and (2.8) has to be adapted 
to the physical problem. Therefore, various calculations were performed to study the 
convergence of the solutions. For this test, we chose a Rayleigh number of 60000, 
a Prandtl number of 0.71 and conducting sidewalls, which is the most critical case 
with respect to the numerical resolution. Due to the relatively small vertical heat 
transfer rate in a small container a t  this Rayleigh number, the application of 
polynomials is not required. To achieve a comparable accuracy of the expansions (2.7) 
and (2.8) it  is necessary to define different procedures for the truncation of each 
expansion. So the representation of @(,) requires a particularly high resolution in the 
x-direction, while we have to pay attention to a sufficient resolution in the y-direction 
of the scalar functions @ ( l ) ,  @(31) and @32). The temperature 0, which is influenced 
by both parts of the velocity field, requires a comparably good resolution in all three 
directions in space. Therefore, the number of coefficients in (2.8) is chosen to be much 
higher than the number of coefficients in one of the velocity expansions (2.7).  The 
various convergence tests show that a comparable accuracy for each direction can 
be achieved by neglecting all coefficients ail,, b,,, cijk and diik which apply to the 
following relations : 

4i +j + 4k > Tl for aijk, cijk,  ( 2 . 1 3 ~ )  
i + 3j + 6k =- T, for bi jk ,  (2.13b) 
i + 2j + 6k > T3 for di jk .  ( 2 . 1 3 ~ )  

The truncation parameters TI ,  T, and T3 are chosen in such a way as to guarantee 
an equal accuracy for all variables. The result of five calculations assuming different 
values for the truncation parameters TI, T, and T3 is summarized in table 2. We chose 
the time-averaged Nusselt number as a characteristic quantity for the comparison 
of the different solutions. The convergence of this parameter depends on the vertical 
resolution as well as on a sufficient resolution in t,he horizontal directions. The 
comparison of the results shows that the low resolution employed in the calculations 
(a)  and (b)  yields inaccurate values of the Nusselt number. Moreover, these calcu- 
lations cannot reproduce the correct time evolution of the flow. By improving the 
resolution (case (c)) we can calculate a Nusselt number which deviates by less than 
1 %  from the best solution ( e ) .  Comparing the solutions ( e )  and (d) ,  the calculated 
Nusselt numbers agree well with each other. The time evolution of both solutions is 
qualitatively identical and the frequency of the oscillations agrees with only 0.6 yo 
deviation. Therefore the approximation used in case (d )  is sufficient for the given 
physical problem and is employed for all calculations reported below, with an 
estimated error of about 1 %. Further, the test calculations result in the surprising 
fact that  the resolution in time is less important for a correct description of the time 
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I t  I J 

FIGURE 2. Streamlines of the steady convection for Ra = 30000 and Pr = 0.71, two-dimensional 
solution (a) ,  ( b ) ,  three-dimensional solution in the symmetry plane (c), (d) ,  sidewalls are conducting 
(a) ,  (c), or adiabatic ( b ) ,  (d). 

evolution of the solutions than the spatial resolution. In the following, we use about 
40 timesteps for the calculation of one period of the oscillations at a Prandtl number 
of 0.71 and about 100 timesteps assuming a Prandtl number of 7. 

3. Steady three-dimensional convection 
The convection flow in a closed box is always three dimensional as a result of the 

no-slip condition at the vertical walls. The influence of this three-dimensionality 
strongly depends on the geometry considered. Nevertheless, it  can be neglected for 
two special cases. The first one is the flow in a box with a large horizontal extent, 
which can be approximately described by means of analysis of infinite layers. The 
second case is the flow in a box with a very small horizontal extent in one direction, 
known as Hele-Shaw flow. In  this flow, one component of the velocity tends to zero 
and a quasi-two-dimensional flow exists. However, considering containers with 
comparable horizontal and vertical dimensions, the influence of the sidewalls must 
be taken into account. This flow cannot be described satisfactorily by a two- 
dimensional model. The solutions obtained from two- or three-dimensional models 
shows principal differences especially in the regime of time-dependent flows. To study 
relations between the spatial structure and the dynamical behaviour of the flow, it 
is necessary to discuss first the three-dimensional effects in the steady flow. In the 
presence of rigid sidewalls there are two mechanisms leading to three-dimensional 
flow. The first one is the interaction of a rotating fluid with a stationary wall, where 
inertial forces induce an axial velocity within the rotating fluid. The second one, called 
thermal end effect, results from temperature gradients normal to the vertical walls. 
These gradients are caused by variations of the velocity field near the walls. As inertial 
forces in the flow field depend on the Prandtl number, the inertial end effect vanishes 
with an increasing value of this parameter. The thermal end effect, however, is 
determined by the thermal boundary condition of the sidewalls. 

First of all we show some essential differences between the two- and three- 
dimensional convection flow by means of the streamline plots in figure 2. The steady 
two-dimensional convection with a Rayleigh number of 30000 and a Prandtl number 
of 0.71 is shown in the upper streamline plots of figure 2. The sidewalls are assumed 
to be conducting (figure 2 a )  or adiabatic (figure 2 b ) .  Contrary to the three-roll 
configuration calculated for adiabatic sidewalls, we can see two additional corner 
vortices in the case of conducting boundaries. Buoyancy forces induced by the 
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FIGURE 3. Light sheet photograph in the symmetry plane of the box at Ra = 30000, Pr = 0.71 
and condacting sidewalls (Jager 1982). 

FIGURE 4. Streamlines of steady convection at Ra = 30000 and Pr = 0.71, adiabatic (a) and 
conducting ( b )  sidewalls. 

temperature field near the wall are the reason for these vortices. These results can 
be compared with streamlines of the three-dimensional flow in the symmetry plane 
y = 0 (figure 2 (c ,  d ) ) ,  where the axial component of the velocity vanishes. The plots 
show that streamlines are no longer closed in the three-dimensional flow, but spiral 
out of the centres of the convection rolls. I n  contrast to the two-dimensional flow, 
an exchange of mass between the different rolls is observed. With conducting 
sidewalls, the streamlines beginning in the centres of the convection rolls all converge 
in the centres of the two corner vortices. However, with adiabatic boundaries, mass 
is transferred from the outer rolls to the central roll and the streamlines there 
converge into a limit cycle. The streamlines clearly show that the whole flow field 
is influenced by the vertical boundaries of the box. This is in good agreement with 
the experimental results of Jager (1982) obtained for the same geometry. In  figure 3 
a light sheet photograph of the convection flow in air with a Prandtl number of 
0.71 visualizes the particle traces in the symmetry plane. The boundary condition 
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FIGURE 5. Streamlines ( a )  and principal sketch ( b )  of the secondary vortices at the front end of 
the convection rolls with conducting sidewalls. 

of conducting sidewalls is well approximated by use of a glass frame for the vertical 
walls. The flow looks quite similar to the calculated streamlines of figure 2 ( c ) .  The 
two corner vortices can be observed although partly hidden by light reflections from 
the sidewalls. 

To give an impression of the general form of the three-dimensional flow some special 
streamlines are displayed in the following figures. For adiabatic sidewalls a streamline 
can be seen in figure 4 ( a )  from different viewpoints. The streamline starts near the 
axis of the central convection roll and circulates helically toward the symmetry plane. 
After increasing its radius the streamline circulates back. Near the sidewall the 
streamline changes to the adjoining roll to start a similar motion. The principal 
behaviour of this three-dimensional flow, illustrated by this special streamline, 
confirms the inertial end effect described above. I n  figure 4 ( b )  a streamline of the flow 
between conducting sidewalls is shown. In the central region of the box the streamline 
looks quite similar to that  in figure 4 (a ) .  However, near the wall the flow is strongly 
three-dimensional, due to the temperature field in this region. The integration of some 
special streamlines starting near a critical point at the lower plate shows an 
interesting aspect of the flow near the wall (figure 5a) .  The singular streamsurface 
formed by these streamlines is sketched in figure 5 (b)  and visualizes secondary 
vortices at the front end of the convection rolls with an axis parallel to the x-direction. 

As mentioned above, the influence of inertial forces depends on the value of the 
Prandtl number. With increasing Prandtl number inertial effects become less and less 
important. For moderate Rayleigh numbers the limit of an inertia-free motion is a 
good approximation for a Prandtl number of 7. In  a convection flow of this higher 
Prandtl number the three-dimensionality only results from the thermal end-effect. 
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FIGURE 6. Streamlines of steady convection with Ra = 30000, Pr = 7 and adiabatic sidewalls. 

The streamlines in figure 6 show that three-dimensional deformations of the flow are 
concentrated in regions near to the wall. The flow near the symmetry plane is 
approximately two-dimensional. 

The solutions for steady convection flow show the strong influence of the thermal 
boundary condition on the three-dimensional structure of the flow. Changing the 
boundary condition from adiabatic to conducting causes two corner vortices and four 
longitudinal vortices at the front end of the convection rolls to appear. While the 
three-dimensionality caused by thermal effects is restricted to a small zone near the 
walls, the inertial end-effect causes a three-dimensional flow in the whole box. The 
consequences of these structural changes of the steady flow with respect to the 
dynamical behaviour will be discussed in the following section. 

4. Time-dependent convection 
With increasing Rayleigh number, the steady three-dimensional convection flow 

becomes unstable with respect to time-dependent disturbances. In general, the first 
time-dependent instability causes a periodic motion of the roll system. This is a 
three-dimensional process in which variations along the axis of the rolls, as well as 
the axial component of the velocity, play an important role. Therefore, the physical 
process of oscillations as it is observed in experiments cannot be reproduced by a 
two-dimensional model which neglects variations of the flow field in the axial 
direction. This is confirmed by two-dimensional, time-dependent calculations for 
Rayleigh numbers up to 400000 and a Prandtl number of 0.71. After a transient stage, 
which depends on the initial condition, all these time-dependent solutions converge 
to a steady state and no oscillation appears in this range of the Rayleigh number. 
An analogous result was found by Curry et al. (1984) for an infinitely extended fluid 
layer. They calculated a critical Rayleigh number for the onset of oscillations of about 
39400 using a two-dimensional model, which is much higher than the corresponding 
value of 26200 obtained with the three-dimensional model. This clearly shows the 
importance of a three-dimensional simulation if we want to describe the dynamical 
behaviour of a flow correctly. 
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FIQURE 7. Time evolution of the temperature O( -0.4LZ, 0,O) at various Rayleigh numbers, 
Pr = 0.71 and conducting sidewalls. (a) Ra = 36000; ( b )  34000; ( c )  32000. 

The critical Rayleigh number Raosc for the onset of the oscillatory instability is 
determined indirectly by nonlinear, time-dependent calculations. The time signal for 
the temperature at a fixed point in the symmetry plane is shown in figure 7 for a 
Prandtl number of 0.71 and three different Rayleigh numbers. The initial condition 
used causes a periodic time evolution which is amplified or damped depending on the 
Rayleigh number being above or below the critical value Ra,,,. By performing more 
calculations for various Rayleigh numbers, the critical Rayleigh number can be 
bounded and approximately determined. I n  this way, we obtain for a Prandtl number 
of 0.71 a critical value of 33 200 f 50 for conducting sidewalls and a slightly increased 
value of 33400 f 50 assuming adiabatic sidewalls. With the present calculation, 
hysteresis effects a t  the bifurcation points cannot be detected. By increasing the 
Prandtl number to 7 ,  the onset of oscillatory convection is shifted to  a higher 
Rayleigh number of Raosc = 39000+ 100. This Prandtl number dependence is 
qualitatively identical with the one observed in fluid layers of infinite extent. Our 
numerical results for the onset of oscillatory convection in air agree well with the 
critical value of 34000 experimentally determined by Jager (1982). The geometry as 
well as the three-roll configuration and the boundary condition in his experimental 
set-up are the same as that assumed in our simulation. Gollub et al. (1980) measured 
a lower critical Rayleigh number of 29000f 1700 for the onset of oscillations in a 
slightly shorter box (I, = 3.5, I ,  = 2.1) and for a Prandtl number of 2.5. Experiments 
of Maurer & Libchaber (1980) for a similar geometry ( I ,  = 3.5, I, = 1.9) filled with 
4He with a Prandtl number of 0.71, yielded a critical Rayleigh number of 23500, 
which is clearly lower than our calculated value. The reason for this discrepancy is 
found in the fact that  they have a two-roll configuration in their box which is more 
unstable than a three-roll system. 

Some information about the spatial structure of the oscillatory flow with a Prandtl 
number of 0.71 and conducting sidewalls is given by the series of plots shown in figure 8. 
Instantaneous streamlines and the corresponding isothermal lines in the symmetry 
plane y = 0 are shown for four different times, with the intervals being equal to 
one-quarter of a period. The piecewise streamlines are integrated up to a certain 
length to  obtain a general impression of the flow structure in this plane without any 
information about the magnitude of the velocity. The streamline plots as well as the 
corresponding isotherms show a periodic motion of the locations of the upward and 
downward flow. This is accompanied by an alternating exchange of mass between 
the three convection rolls. I n  figure 8(a,) fluid is transported from the outer rolls to 
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FIGURE 8. Instantaneous streamlines and isotherms in the symmetry plane y = 0 with 
Ra = 38000 and Pr = 0.71. (a) 1 = 6.988; ( b )  7.012; (c) 7.036; (d )  7.060. 

FIGURE 9. Isothermal lines in the plane z = 0 at Ra = 38000 and Pr = 0.71. (a )  t = 6.988; 
(b)  7.012; (c) 7.036; (d )  7.060. 

the small inner roll, which rotates faster than the outer ones. By increasing its 
horizontal extent, the inner roll decreases its rotational speed (figure 8 b ) .  In  figure 
8 ( c )  the central roll has grown to its maximum size and a mass transfer begins from 
the centre roll to the two outer rolls. The inner roll now again decreases until the 
initial situation is achieved and one period of the oscillation is performed. To get more 
information about the three-dimensional oscillatory flow the temperature field in the 
( z  = 0)-plane is displayed by a series of isothermal lines in figure 9. As the temperature 
in this plane is strongly coupled with the vertical component of the velocity, the 
extreme values of the temperature are nearly identical with the location of maximum 
downward and upward motions. The plots show that the oscillation has its maximum 
amplitude in the central region of the box and is very small near the vertical walls. 
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FIGURE 10. Isotherms in the plane z = 0 at Ra = 50000 and Pr = 7. ( a )  t = 0.505; ( b )  0.515; 
( e )  0.525; ( d )  0.535. 

Therefore, the horizontal extent of the rolls strongly varies along the axial direction. 
This variation of the radius of the rotating fluid causes inertial forces which induce 
an axial velocity to the convection rolls. In  the oscillating flow the direction of the 
axial velocity is changed periodically and fluid is transported from regions where the 
extent of the convection roll is large to regions where it is smaller. Together with 
alternating exchange of mass between the different rolls, this is the mechanism which 
maintains the oscillations of the flow with a Prandtl number of 0.71. 

For an oscillatory solution of the flow in a box with adiabatic sidewalls, the results 
for the onset of the instability, as well as the frequency of the oscillation, differ only 
slightly from the data obtained for conducting walls. Although the three-dimensional 
structure of the flow strongly depends on the thermal boundary conditions, the 
physical process of the oscillations is not influenced by the thermal conditions at  the 
walls. This can easily be understood by realizing the fact that oscillations mainly 
appear in the central regions of the box and that the three-dimensional flow near the 
walls is of secondary importance. The results presented above are in good agreement 
with recent numerical solutions obtained by Upson et al. (1983). Although the 
geometry and the Prandtl number assumed in their simulation differ slightly from 
the parameters we used, the main frequency agrees within 2 yo deviation. 

With increasing Prandtl number the inertial forces decrease and the behaviour of 
the oscillating flow changes dramatically. The series of plots showing isotherms in 
the ( z  = 0)-plane makes this obvious (figure 10). The Prandtl number of this 
simulation is 7 and the sidewalls are assumed adiabatic. The upward and downward 
motions occur at nearly fixed locations, while the maximum amplitude of the flow 
varies periodically along the axial direction. By comparing the results obtained for 
different Prandtl numbers, the importance of inertial forces with respect to the 
structure of oscillatory convection can be seen. While the oscillatory convection in 
a high Prandtl number flow is caused by thermal instabilities, the oscillating flow in 
a low-Prandtl-number fluid is a consequence of inertial forces in the flow. 

A number of experiments in boxes show that a periodic flow is the first step in 
a sequence of instabilities. By increasing the Rayleigh number we want to examine 
which of the further instabilities can be found by the numerical simulation. To 
characterize the dynamical evolution of the calculated flow field we use power spectra 
analysis of the temperature 0 at a fixed point ( -O.4Lz, 0 , O )  of the symmetry plane. 
Figure 11 shows two sequences of power spectra obtained by simulating the 
convection flow in air for various Rayleigh numbers assuming either conducting (left) 
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FIGURE 1 I .  Sequences of power spectra of the temperature O( -0.4L,, 0,O) assuming conducting 
(left) or adiabatic (right) sidewalls, Pr = 0.71. (a )  Ra = 38000; ( b )  40000; (c) 50000; ( d )  60000. 

or adiabatic sidewalls (right). Long-time simulations, including 30 periods or more, 
serve as the basis for the power spectra with an elimination of the transient effects 
in the time evolution. Considering the flow with a Rayleigh number of 38000 the 
spectra show a single main frequency and its higher harmonics, which means a 
periodic flow for both thermal boundary conditions. In a box with adiabatic sidewalls 
this periodic flow remains stable up to a Rayleigh number of 60000. The power 
spectra show solely an increasing main frequency and a varying amplitude of the 
higher harmonics when the Rayleigh number increases. A further instability does not 
occur in this range of the Rayleigh number. However, assuming conducting sidewalls 
we observe quite a different behaviour of the periodic flow. At a Rayleigh number 
of 40000 a subharmonic frequency and its combinations with the main frequency show 
up in the power spectrum. The amplitude of the subharmonic is about 10% of the 
amplitude of the main frequency. This oscillatory state is stable up to a Rayleigh 
number of about 56000 with slight variations of the amplitude ratio of the different 
frequencies. The onset of the subharmonic frequency might be explainable by a 
secondary time-dependent instability of the oscillating flow. The critical Rayleigh 
number for this instability is slightly beyond a value of 38000, and a small hysteresis 
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FIGURE 12. Time evolution of the temperature @( -0.4Lz,O,0) a t  Ra = 39000, Pr = 0.71 and 
conducting sidewalls (a) and the corresponding power spectra before (6) and after the occurrence 
of the subharmonic frequency (c). 

effect can be observed. The Rayleigh numbers of the two bifurcation points 
determined by increasing or decreasing the Rayleigh number respectively, only differ 
by a value of about 800. A long simulation at the Rayleigh number of 39000 gives 
an idea of this instability. The time evolution of the temperature is shown in 
figure 12 for this simulation. We start the calculation with a solution of the steady 
Boussinesq equation obtained for this Rayleigh number. This solution is unstable 
with respect to time-dependent disturbances and the round-off errors are sufficient 
to amplify the oscillatory instability. The amplitude of the oscillations first grows 
exponentially and then converges to a constant value. This oscillatory flow is 
preserved over more than 20 periods. A power spectrum of the temperature in this 
time interval shows a single frequency fi and its higher harmonics as observed for 
lower Rayleigh numbers. The further evolution in time shows a superposition of 
a disturbance of twice the period on to the oscillating temperature signal and a new 
stable flow is established. The corresponding power spectra now show the subharm- 
onic frequency fl. As the Rayleigh number in this caiculation is only slightly beyond 
the critical value for the onset of the subharmonic instability, the characteristic time 
for the'growth of the amplitude is very long. Therefore, we observe many nearly 
undisturbed periods of the primary oscillation until the amplitude of the subharmonic 
disturbance has grown enough to influence the time evolution. However, at  higher 
Rayleigh numbers the growth rate is increased and the secondary subharmonic 
instability can be seen immediately after the primary oscillation has reached its 
maximum amplitude. 

At a Rayleigh number of 60000 a further bifurcation occurs and the periodic state 
is replaced by a quasi-periodic flow. The subharmonic peak splits into two frequencies 
fz, f, with the small difference f*. Many linear combinations of these frequencies 
indicate the strongly nonlinear character of this process. Note that none of the two 
frequencies fz, f, is a subharmonic of the main frequency fl. The two peaks are 
arranged symmetrically around the frequency + fi, that is, the arithmetically averaged 
frequency of f2 and f, is exactly if,. The physical meaning of such a spectrum can 
easily be seen in the corresponding time evolution of the temperature in figure 13. 
The subharmonic oscillation still appears, but with an amplitude modulated by the 
low frequency f*. 

The results presented above concerning the onset of a subharmonic instability 
clearly indicate the strong influence of the thermal boundary condition. A t  first sight 
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FIGURE 13. Time evolution of the temperature #(-O.4Lz,0,O) at Ra = 60000, Pr = 0.71 and 
conducting sidewalls. The amplitude of the subharmonic is modulated with the frequency f*. 
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FIGURE 14. Power spectra of velocity and temperature a t  various locations for Ra = 50000 and 
Pr = 0.71. (a) temperature O( -0.4L2, 0 , O ) ;  ( 6 )  temperature #( -0.55L2, 0 , O ) ;  ( c )  velocity component 
u( -0.55L2,0, 0) (d) temperature 8( - 1.5Lz, 0.6Lz, -0.40L2). 

this is a surprising fact, since the primary oscillations of the flow are mainly restricted 
to the central region of the box, and no significant influence of the thermal boundary 
condition on this primary time-dependent instability is found. To clarify this strange 
behaviour of the flow we need more information about the spatial structure of the 
time-dependent flow field. The numerical simulation has the advantage that a 
solution, once it has been calculated and stored, can be analysed from various points 
of view. For example, there is the possibility of calculating power spectra of all 
variables at an arbitrary point in the flow field. A selection of the numerous spectra 
calculated is shown in figure 14 for a Rayleigh number of 50000, a Prandtl number 
of 0.71 and conducting sidewalls. A comparison of different power spectra shows that 
a frequency observed a t  an arbitrary point can be detected in the spectra of all 
variables in the whole flow field, provided that the resolution of the spectral analysis 
is sufficient. However, the amplitude of a certain frequency strongly depends on the 
location of the measurement and on the variable considered. This is illustrated by 
the four power spectra displayed in figure 14, all based on the same time interval of 
one solution. In  figure 14 ( a )  a spectrum of the temperature at  the point (-0.4L,, 0,O) 
is shown. The main frequencyf, dominates and the amplitudes of its higher harmonics 
decrease exponentially. By recording the power spectrum closer to the region of 
upwards motion, the amplitude of the first harmonic exceeds the main frequency f, 
(figure 146), a known phenomenon which occurs near a periodically moving maximum 
of the variable considered. At the same location the power spectrum of the 
u-component of the velocity shows a maximum peak with the frequencyf, (figure 
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FIGURE 15. Contour plots of the temperature for the mean flow (a), ( b ) ,  the amplitude of the 
oscillationsf, ( e ) ,  (d )  and the amplitude of the subharmonic frequency if, ( e ) ,  ( f )  in the horizontal 
planes z = 0 (left) and z = -0.35L, (right). 

14c). The ratio between the subharmonic peak and the main frequency also strongly 
depends on the location of the measurement. The subharmonic peak even dominates 
in a region near the corner of the box, as shown in the power spectrum of figure 14 (d).  
The examples demonstrate the difficulties in characterizing a three-dimensional flow 
field by one single power spectrum recorded at one fixed point. The ratio of the 
different peaks in a power spectrum is not representative for the global flow field but 
depends on the spatial location. This must be taken into account, especially when 
comparing the time history of flows with different spatial structures. Therefore, 
without further information, the amplitude ratios of the peaks in a single power 
spectrum cannot imply the existence of a subharmonic frequency. 

To clarify the influence of the thermal boundary conditions on the occurrence of 
bifurcations it is necessary to study the amplitude distribution of the different 
frequencies. Therefore, we decompose the flow variables a t  every point in the box 
into three different parts : a time-averaged value, an oscillating part with frequency 
fi and a subharmonic part with frequency ifi. Further peaks are neglected in this 
decomposition. This way we not only get the time-averaged flow but also the spatial 
distribution of the oscillation and the subharmonic frequency + fi. The oscillatory 
flow a t  a Rayleigh number of 50000 and a Prandtl number of 0.71 between conducting 
sidewalls is chosen for the decomposition. The results are plotted in figure 15 for the 
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horizontal planes z = 0 and z = -0.35L2. The time-averaged temperature distribu- 
tions are displayed in the two contour plots at the top of the figure. I n  the plane z = 0 
(figure 1 5 a )  the regions of upward and downward motion of the convection flow can 
be clearly seen. The amplitude of the temperature oscillations with the frequency f i  
is illustrated by the contour maps of figure 15(c)  and ( d ) .  I n  the midylane of the box 
we can recognize two maxima of the oscillation amplitude located in the central region 
of the box. This amplitude distribution is caused by the periodic motion of regions 
of upward and downward flow shown in figure 9. Further regions of large temperature 
fluctuations occur near the four corners. I n  the ( z  = -0.35L2)-plane the maximum 
amplitude is shifted to  the region near the left wall of the box. The amplitude 
distribution of the subharmonic frequency i f i  differs from that of the primary 
oscillation (figure 15e, f ). I n  the region of maximum amplitude of the oscillation fi 
the subharmonic frequency has only small amplitudes. I n  the midplane z = 0 the 
subharmonic is concentrated near the four corners. The maximum amplitude of the 
frequency ifl, however, occurs near the left corners in the ( z  = -0.35L2)-plane (figure 
15f ). At this location the amplitude of the subharmonic temperature fluctuations 
exceeds the amplitude of the primary oscillation. By comparing the regions of large 
subharmonic amplitudes with the topological structure of the three-dimensional flow, 
we obtain the interesting result that  these regions correspond to the corner vortices 
caused by the conducting sidewall. This clearly shows a relation between the spatial 
structure of the flow and its evolution in time. The subharmonic bifurcation seems 
to  be caused by the special three-dimensional flow field of the two corner vortices. 
I n  the absence of these corner vortices, in other words for adiabatic sidewalls, a 
subharmonic frequency cannot be detected in the whole range of Rayleigh numbers 
considered in these simulations. 

5. Discussion 
The numerical simulation of the convection flow in a box yields some interesting 

relations between the three-dimensionality of the flow and its dynamical evolution 
in time-dependent processes. For the case of rigid sidewalls the thermal end-effect 
and the inertial end-effect influence the flow in the whole region. The complex helical 
structure of the convection rolls caused by the inertial end-effect strongly depends 
on the Prandtl number and can be neglected for large-Prandtl-number fluids. By 
changing the thermal boundary conditions of the sidewalls from adiabatic to 
conducting boundaries, thermal effects increase and an additional system of secon- 
dary vortices is generated near the sidewalls. The numerical simulation proves to be 
a good tool for studying these three-dimensional effects. Integrated streamlines in 
connection with topological considerations give a good impression of the three- 
dimensional structure of the flow. Quantitative measurements of velocity components 
in a single plane, however, often give the impression of a nearly two-dimensional 
behaviour of the flow in the central region of the box. Details of the flow like the 
exchange of mass between neighbouring rolls, the helical structure of the rolls and 
the secondary vortices cannot be detected this way. 

The critical Rayleigh number for the onset of oscillatory convection is determined 
approximately by nonlinear, time-dependent calculations. The onset of the oscilla- 
tory instability as well as its frequency are nearly independent of the choice of the 
thermal boundary conditions and the corresponding change in the flow structure. At 
low Prandtl numbers the oscillating flow is characterized by periodic displacements 
of the regions of upward and downward motion caused by inertial forces in the flow. 
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With increasing Prandtl number this instability is replaced by another oscillatory 
mode which is caused by a thermal instability only. A quantitative representation 
of these time-dependent instabilities can be obtained only by three-dimensional 
simulations. 

In  contrast to the oscillatory instability, the further bifurcations strongly depend 
on the spatial structure of the flow. For adiabatic sidewalls no further instability can 
be observed in the range of Rayleigh numbers considered. However, assuming 
conducting sidewalls, a subharmonic frequency can be observed with increasing 
Rayleigh number. The calculated threshold for the subharmonic agrees well with 
experimental data obtained by Gollub & Benson (1980), who find the first subhar- 
monic bifurcation at a Rayleigh number of 36700+ 800. Nevertheless, we have to 
keep in mind that  some of the experimental parameters differ somewhat from the 
assumptions in our simulation. A relationship between this instability and the 
secondary corner vortices is shown by analysing the spatial structure of the 
time-dependent flow. The physical process leading to a subharmonic instability, 
however, cannot be identified clearly by this correlation. A hypothetical mechanism 
for this instability is discussed in the following. The primary oscillatory instability 
mainly occurs in the central region of the box. The flow near the sidewalls including 
the corner vortices is not involved in this instability. This fact is proved by comparing 
oscillating solutions obtained with different boundary conditions. However, the 
corner vortices are strongly coupled with the convection rolls via the varying mass 
exchange. So they can be considered as a secondary system which is forced by the 
oscillating convection rolls. Beyond the onset of the oscillatory instability the 
secondary system at first responds with oscillations of the frequency fl. This is 
confirmed by maxima of the amplitude distribution of the primary oscillation at the 
corner vortices. Increasing the Rayleigh number causes a subharmonic response to 
appear in addition to the basic frequency, which is documented by the high amplitude 
of the frequency ifi in the region of the corner vortices. This phenomenon can be 
explained by a subharmonic resonance between the two oscillating systems. Further 
theoretical and experimental studies are necessary to clarify this physical process and 
to prove or to reject the explanation given above. 

At higher Rayleigh numbers a splitting of the subharmonic peak is observed. The 
resulting two peaks are arranged symmetrically around the frequency t fl and differ 
by the low frequencyp. So we obtain a quasi-periodic flow with a modulation in time 
of the subharmonic part of the oscillation. A rather similar effect was found in 
experiments of Gollub et al. (1980). For special initial conditions they observed a 
quasi-periodic motion which resulted also from a slow modulation in time of the 
second subharmonic of the oscillating flow. This comparison confirms that the 
quasi-periodic regime obtained by the numerical simulation is a real physical effect 
in the flow. 

With a further increase of the Rayleigh number we obtain aperiodic solutions for 
both conducting and adiabatic sidewalls. We attribute this result to the insufficient 
spatial resolution of the numerical discretization a t  these high Rayleigh numbers. 
This is confirmed by the fact that the beginning of the aperiodic regime strongly 
depends on the number of basis functions used in the numerical method. 

The numerical results presented above clearly show the importance of the spatial 
structure of the flow in order to explain the time evolution of this dynamical system. 
Secondary effects, like the appearance of the corner vortices, can change the 
dynamical behaviour of the flow fundamentally. Gollub et al. (1980) and McLaughlin 
& Orszag (1982) arrived a t  similar conclusions. The spatial structure of the primary 
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oscillation differs strongly from that of the subharmonic ones. So it seems unlikely 
that a simple model can yield quantitative predictions for such a flow without a 
reasonable consideration of the whole spatial structure of the system. 
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